

Indian Journal of Modern Research and Reviews

This Journal is a member of the '**Committee on Publication Ethics**'

Online ISSN:2584-184X

Research Article

A Review of Deep Learning Algorithms and Their Applications in Healthcare

Chinderpal Kaur ^{1*}, Shalu Gupta ², Jaswinder Brar ³

¹ Student, Department of Computer Applications, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India

² Associate Professor, Department of Computer Applications, Guru Kashi University, Talwandi Sabo Bathinda, Punjab, India

³ Assistant professor, Department of Computer Applications, Guru Kashi University, Talwandi Sabo Bathinda, Punjab, India

Corresponding Author: *Chinderpal Kaur

DOI: <https://doi.org/10.5281/zenodo.18266545>

Abstract

Deep learning, a subset of machine learning based on multi-layered artificial neural networks, has emerged as a powerful paradigm for pattern recognition and predictive analytics from large-scale data. This paper presents a comprehensive review of foundational deep learning architectures, including autoencoders, convolutional neural networks (CNNs), and recurrent neural networks (RNNs), along with their variants. The evolution of deep learning from early perceptrons to modern pre-training strategies is outlined. Particular emphasis is placed on healthcare applications, where deep learning has demonstrated remarkable performance in medical imaging, physiological signal analysis, disease diagnosis, and pandemic response (especially COVID-19 detection and classification). Advantages, limitations, and comparative performance of major algorithms are discussed. Finally, current challenges and future research directions in healthcare-oriented deep learning are highlighted.

Index Terms: Deep learning, artificial neural networks, autoencoders, convolutional neural networks, recurrent neural networks, healthcare informatics, medical imaging, COVID-19 diagnosis.

Manuscript Information

- **ISSN No:** 2584-184X
- **Received:** 27-11-2025
- **Accepted:** 28-12-2025
- **Published:** 16-01-2026
- **IJCRM:**4(1); 2026: 92-96
- **©2026, All Rights Reserved**
- **Plagiarism Checked:** Yes
- **Peer Review Process:** Yes

How to Cite this Article

Kaur C, Gupta S, Brar J. A Review of Deep Learning Algorithms and Their Applications in Healthcare. Indian J Mod Res Rev. 2026;4(1):92-96.

Access this Article Online

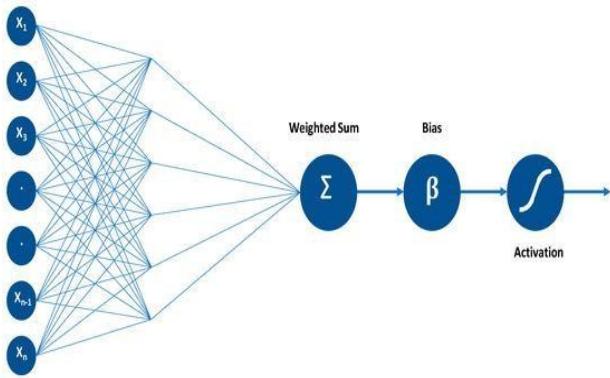
www.multiarticlesjournal.com

KEYWORDS: Deep Learning, Artificial Neural Networks, Autoencoders, Convolutional Neural Networks, Recurrent Neural Networks, Healthcare Informatics, Medical Imaging, COVID-19 Diagnosis.

1. INTRODUCTION

Deep learning refers to the training of artificial neural networks (ANNs) with multiple hidden layers to learn hierarchical feature representations directly from raw data [1]. Inspired by the

human brain's structure and function, deep learning has evolved significantly since the introduction of the perceptron in the 1950s. Despite early setbacks highlighted by Minsky and Papert in 1969 [2], breakthroughs such as backpropagation [3], the


Neocognitron [4], Boltzmann machines [5], and deep belief networks [6] paved the way for modern deep learning. The 2006 introduction of layer-wise pre-training by Hinton et al. [6] marked a turning point, enabling successful training of very deep architectures. Object detection and recognition are key elements of image processing and have emerged as major research areas in image processing and pattern recognition [20, 21]. Edge detection techniques are widely used in research areas such as computer vision, machine learning, and pattern recognition [22, 23].

The resurgence of deep learning has been fueled by three factors: availability of massive datasets, powerful GPUs, and algorithmic innovations. These advances have made deep learning the state-of-the-art approach across diverse domains, including healthcare.

2. Core Deep Learning Architectures

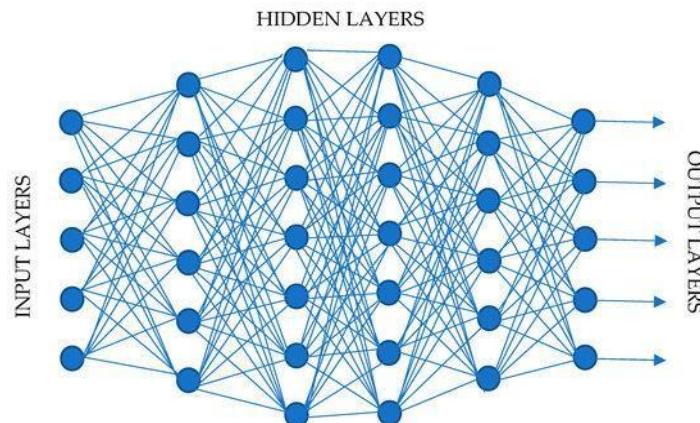

Artificial Neural Networks and Perceptrons: The fundamental building block of deep learning is the artificial neuron (perceptron), which computes a weighted sum of inputs followed by a non-linear activation function (Fig. 1).

Fig. 1: Structure of an artificial neuron [7].

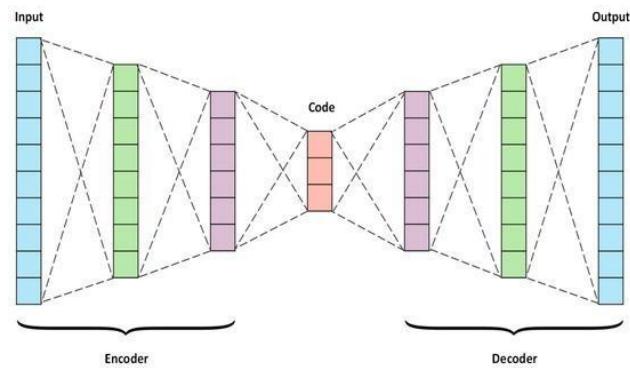
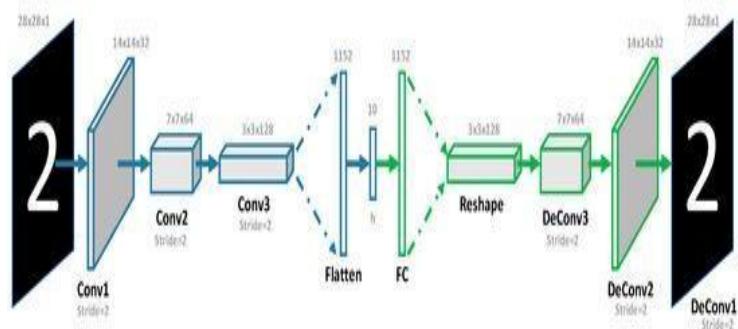

Multi-layer perceptrons (MLPs) stack these neurons into input, hidden, and output layers (Fig. 2).

Fig. 2: General architecture of a feed-forward neural network [7].

A. Autoencoders (AEs): Autoencoders are unsupervised neural networks designed for dimensionality reduction and feature learning. They compress input data into a lower-dimensional latent representation (encoding) and reconstruct the original input (decoding) (Fig. 3).


Fig. 3: Basic autoencoder architecture [8].

Variants include:

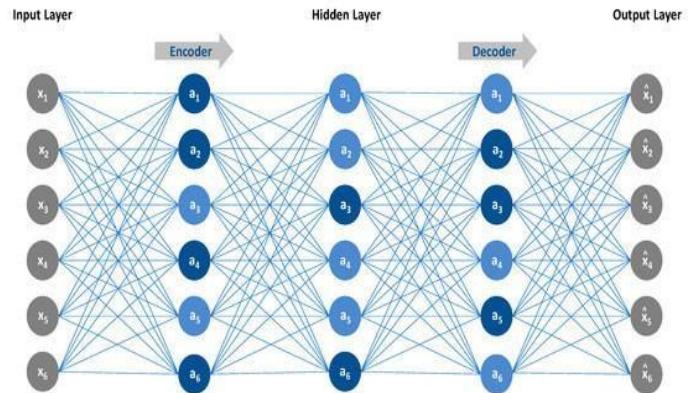

Convolutional Autoencoders: Replace fully connected layers with convolutional operations for image data (Fig. 4).

Fig. 4: Convolutional autoencoder [8].

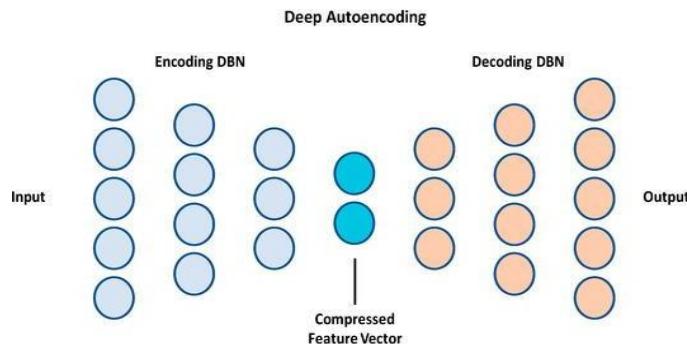

▪ Sparse Autoencoders: Impose sparsity constraints on hidden units (Fig. 5).

Fig. 5: Sparse autoencoder with sparsity penalty [8].

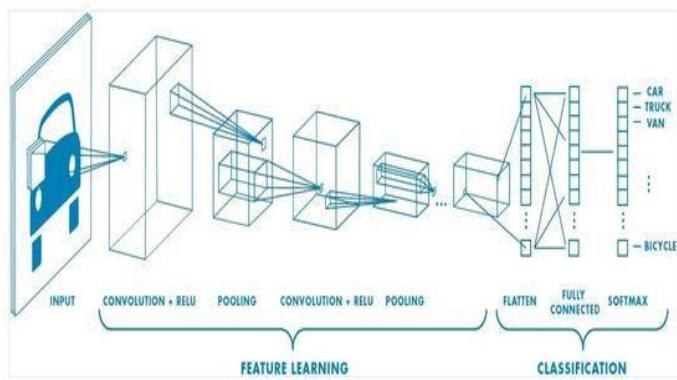
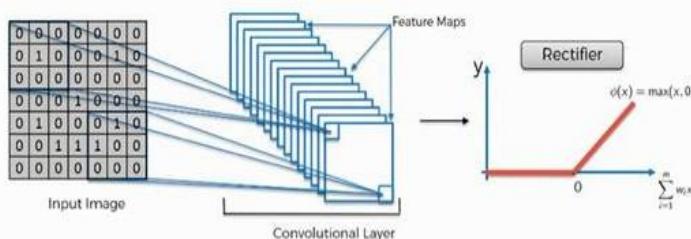

- Deep Autoencoders: Stack multiple encoding/decoding layers symmetrically (Fig. 6).

Fig. 6: Deep (stacked) autoencoder [8].

C. Convolutional Neural Networks (CNNs): CNNs are specialised for grid-like data (especially images) and exploit spatial locality through convolution and pooling operations (Fig. 7).


Fig. 7: Typical CNN architecture with convolution, ReLU, and pooling layers [9].

Key operations:

- Convolution with learnable filters
- Non-linear activation (ReLU) (Fig. 8)

Fig. 8: ReLU activation function breaking linearity [9].

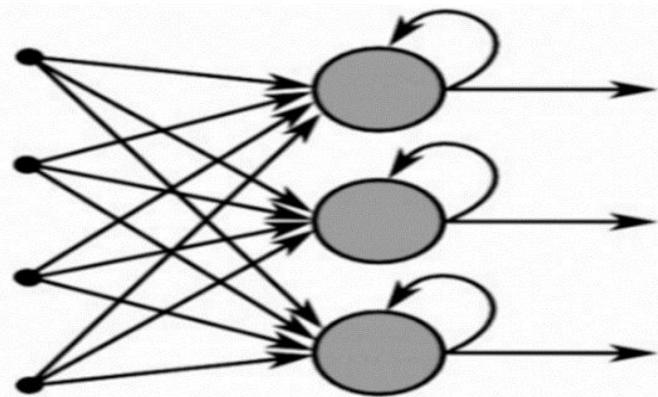

- Pooling (e.g., max pooling) for translation invariance (Fig. 9)

Fig. 9: Effect of max pooling on spatial variance [9].

D. Recurrent Neural Networks (RNNs): RNNs process sequential data by maintaining hidden states that capture temporal dependencies (Fig. 10).

Fig. 10: Unfolded recurrent neural network showing information flow through time [10].

Long Short-Term Memory (LSTM) units and Gated Recurrent Units (GRUs) mitigate vanishing/exploding gradient problems in standard RNNs.

3. Comparative Analysis

Table I summarises key deep learning algorithms, their learning type, strengths, weaknesses, and typical applications.

Table 1: Comparison of Major Deep Learning Algorithms

Algorithm	Learning Type	Strengths	Limitations	Common Applications
Backpropagation	Supervised	Simple, fast implementation	Sensitive to noise, long training	Speech/face recognition
Autoencoders	Unsupervised	Dimensionality reduction, denoising	Requires careful hyperparameter tuning	Feature learning, anomaly detection
CNNs	Supervised	Excellent for spatial data	High computational cost	Medical imaging, object detection
RNNs/LSTMs	Supervised/Unsupervised	Handles sequences effectively	Vanishing gradients (mitigated)	by LSTM) Time-series, speech, NLP
Deep Belief Networks	Unsupervised + Supervised fine-tuning	Effective pre-training	Complex training	Generative modeling

4. Applications in Healthcare

Deep learning has revolutionised several healthcare domains:

1. Medical Imaging: CNNs achieve radiologist-level performance in detecting diabetic retinopathy, skin cancer, and breast cancer from mammograms [11]–[13].
2. Physiological Signal Analysis : 1D-CNNs and RNNs classify ECG, EEG, EMG, and EOG signals for arrhythmia detection, seizure prediction, and sleep staging [14], [15].
3. COVID-19 Diagnosis: During the pandemic, CNN-based models trained on chest X-rays/CT scans achieved 95%–99% accuracy in distinguishing COVID-19 from viral pneumonia and healthy cases [16]–[18].
4. Drug Discovery and Genomics: Deep autoencoders and generative models accelerate molecular design and predict protein structures (e.g., AlphaFold) [19].

5. Challenges and Future Directions

Despite successes, several challenges remain:

- Data Requirements: Need for large labeled datasets and privacy concerns
- Interpretability: “Black-box” nature hinders clinical trust
- Computational Cost: Training requires expensive hardware
- Generalization: Models may fail on out-of-distribution data

Promising directions include:

- AutoML and Neural Architecture Search (NAS) for automated model design
- Explainable AI (XAI) techniques tailored for healthcare
- Federated Learning to preserve patient privacy
- Hybrid models combining deep learning with domain knowledge

6. CONCLUSION

Deep learning has transformed healthcare by enabling unprecedented accuracy in diagnosis, prognosis, and treatment planning. From foundational autoencoders and CNNs to advanced sequence models, these algorithms continue to expand the boundaries of automated medical decision-making. As datasets grow and algorithms become more efficient and interpretable, deep learning is poised to play an even greater role in precision medicine and global health.

REFERENCES

1. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): MIT Press; 2016.
2. Minsky M, Papert S. Perceptrons. Cambridge (MA): MIT Press; 1969.
3. Werbos PJ. Beyond regression: New tools for prediction and analysis in the behavioral sciences [PhD dissertation]. Cambridge (MA): Harvard University; 1974.
4. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biol Cybern*. 1980;36(4):193–202.
5. Hinton GE, Sejnowski TJ. Learning and relearning in Boltzmann machines. In: Rumelhart DE, McClelland JL, editors. *Parallel distributed processing*. Vol 1. Cambridge (MA): MIT Press; 1986.
6. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. *Neural Comput*. 2006 Jul;18(7):1527–54.
7. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. *Psychol Rev*. 1958;65(6):386–408.
8. Charte D, Charte F, García S, del Jesus MJ, Herrera F. A comprehensive overview on autoencoders. *Wiley Interdiscip Rev Data Min Knowl Discov*. 2020;10(3):e1343.
9. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: *Advances in Neural Information Processing Systems (NIPS)*; 2012. p. 1097–105.
10. Hochreiter S, Schmidhuber J. Long short-term memory. *Neural Comput*. 1997 Nov;9(8):1735–80.
11. Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. *JAMA*. 2016;316(22):2402–10.
12. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. *Nature*. 2017 Feb;542:115–8.
13. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: An overview and application in radiology. *Insights Imaging*. 2018;9:611–29.
14. Acharya UR, Fujita H, Oh SL, et al. Automated detection of arrhythmias using different intervals of tachycardia

ECG segments with convolutional neural network. *Inf Sci.* 2017 Sep;405:81–90.

15. Yildirim O. A novel wavelet sequence based on deep bidirectional LSTM for ECG classification. *Comput Biol Med.* 2018 May;96:189–202.
16. Apostolopoulos ID, Mpesiana TA. COVID-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. *Phys Eng Sci Med.* 2020;43:635–40.
17. Toğacıar M, Ergen B, Cömert Z. COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches. *Comput Biol Med.* 2020 Jun;121:103805.
18. Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A. Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks. *Comput Biol Med.* 2020 Jun;121:103795.
19. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. *Nature.* 2021 Aug;596:583–9.
20. Gupta S, Singh YJ, Kumar M. Object detection using multiple shape-based features. In: *Proceedings of the IEEE Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC)*; 2016 Dec. p. 433–7.
21. Gupta S, Singh YJ. Glowing window based feature extraction technique for object detection. In: *International Conference on Data Management, Analytics and Innovation*; 2020 Jan 17–19; New Delhi, India.
22. Gupta S, Singh YJ. Object detection using peak, balanced division point and shape-based features. In: *6th International Conference on Data Management, Analytics and Innovation*; 2022 Jan 14–16.
23. Gupta S, Singh H, Singh YJ. Comprehensive study on edge detection. In: *International Conference on Communication, Electronics and Digital Technology (NICE)*; 2023 Feb 10–11.

Creative Commons License

This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. This license permits users to copy and redistribute the material in any medium or format for non-commercial purposes only, provided that appropriate credit is given to the original author(s) and the source. No modifications, adaptations, or derivative works are permitted.

About the corresponding author

Chinderpal Kaur is a student in the Department of Computer Applications at Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India. Her academic interests include computer applications, programming, and emerging technologies, with a focus on developing practical skills for problem-solving and innovation in the field of computing.